推广 热搜:

如何用神经网络预测股票价格

   日期:2025-06-24     浏览:21    评论:0    
核心提示:一、如何利用训练好的神经网络进行预测预测的时候还是将需要的参数作为输入。训练的时候不是有15组样本吗(4*15和6*15的),说明输入节点数为4,输出节点数为6。因此预测时,将用于预测的4个参数作为输

一、如何利用训练好的神经网络进行预测

预测的时候还是将需要的参数作为输入。训练的时候不是有15组样本吗(4*15和6*15的),说明输入节点数为4,输出节点数为6。因此预测时,将用于预测的4个参数作为输入,神经网络的6个输出即为预测结果。神经网络因其很好的函数逼近能力而被广泛应用于非线性系统建模、辨识和控制中。根据应用场合的不同,神经网络可分为静态和动态神经网络两类。静态(或前馈)神经网络没有反馈成分,也不包含输人延时,输出直接由输人通过前向网络算出;动态神经网络的输出不仅依赖当前的输人,还与当前和过去的输入、输出有关。

如何利用训练好的神经网络进行预测

二、如何利用训练好的神经网络进行预测

预测的时候还是将需要的参数作为输入。训练的时候不是有15组样本吗(4*15和6*15的),说明输入节点数为4,输出节点数为6。因此预测时,将用于预测的4个参数作为输入,神经网络的6个输出即为预测结果。神经网络因其很好的函数逼近能力而被广泛应用于非线性系统建模、辨识和控制中。根据应用场合的不同,神经网络可分为静态和动态神经网络两类。静态(或前馈)神经网络没有反馈成分,也不包含输人延时,输出直接由输人通过前向网络算出;动态神经网络的输出不仅依赖当前的输人,还与当前和过去的输入、输出有关。

如何利用训练好的神经网络进行预测

三、如何得到神经网络预测结果

如果你用9——11年的数据不经过预测12——19年的数据就想得到第20年的数据的做法是不合理的,神经网络的预测讲求时间序列的连续性,你可以在编写maltab程序的时候才用递归的方法调用神经网络工具箱,加上对预测数据进行一定的格式操作就可以了,这样你想读到第几年的数据都行。

如何得到神经网络预测结果

四、如何用人工神经网络确定指标体系的权重?

说的确定应该就是训练方法吧,神经网络的权值不是人工给定的。而是用训练集(包括输入和输出)训练,用训练集训练一遍称为一个epoch,一般要许多epoch才行,目的是使得目标与训练结果的误差(一般采用均方误差)小到一个给定的阈值。以上所说是有监督的学习方法,还有无监督的学习方法。

如何用人工神经网络确定指标体系的权重?

五、如何用神经网络进行时间序列预测

将时间序列拆开,组织训练样本。参考附件的例子,用的是BP神经网络。 BP(Back Propagation)神经网络是86年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

如何用神经网络进行时间序列预测

原文链接:http://www.ycfyt365.com/news/25606.html,转载和复制请保留此链接。
以上就是关于如何用神经网络预测股票价格全部的内容,关注我们,带您了解更多相关内容。
 
打赏
 
更多>同类资讯
0相关评论

推荐资讯
网站首页  |  VIP套餐介绍  |  关于我们  |  联系方式  |  手机版  |  版权隐私  |  SITEMAPS  |  高血压肾病吃什么好?医生提出了这个总体原则!保健公司  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  晋ICP备2022001766号